A Micro-Force Sensor with Beam-Membrane Structure for Measurement of Friction Torque in Rotating MEMS Machines
نویسندگان
چکیده
In this paper, a beam-membrane (BM) sensor for measuring friction torque in micro-electro-mechanical system (MEMS) gas bearings is presented. The proposed sensor measures the force-arm-transformed force using a detecting probe and the piezoresistive effect. This solution incorporates a membrane into a conventional four-beam structure to meet the range requirements for the measurement of both the maximum static friction torque and the kinetic friction torque in rotating MEMS machines, as well as eliminate the problem of low sensitivity with neat membrane structure. A glass wafer is bonded onto the bottom of the sensor chip with a certain gap to protect the sensor when overloaded. The comparisons between the performances of beam-based sensor, membrane-based sensor and BM sensor are conducted by finite element method (FEM), and the final sensor dimensions are also determined. Calibration of the fabricated and packaged device is experimentally performed. The practical verification is also reported in the paper for estimating the friction torque in micro gas bearings by assembling the proposed sensor into a rotary table-based measurement system. The results demonstrate that the proposed force sensor has a potential application in measuring micro friction or force in MEMS machines.
منابع مشابه
Measuring Micro-Friction Torque in MEMS Gas Bearings
An in situ measurement of micro-friction torque in MEMS gas bearings, which has been a challenging research topic for years, is realized by a system designed in this paper. In the system, a high accuracy micro-force sensor and an electronically-driven table are designed, fabricated and utilized. With appropriate installation of the sensor and bearings on the table, the engine rotor can be drive...
متن کاملA Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings
Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite...
متن کاملMicro-cantilevered MEMS Biosensor for Detection of Malaria Protozoan Parasites
In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcan...
متن کاملAtomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor
Sidewall roughness measurement is becoming increasingly important in the micro-electromechanical systems and nanoelectronics devices. Atomic force microscopy (AFM) is an emerging technique for sidewall scanning and roughness measurement due to its high resolution, three-dimensional imaging capability and high accuracy. We report an AFM sidewall imaging method with a quartz tuning fork (QTF) for...
متن کاملFour-wire orthogonal structure for accurate measurement of fluid velocity and wind flow direction using silicon micro-machining on silicon nitride membranes
Microelectromechanical thermal sensors are one of the most accurate and important tools for measuring the direction and velocity of an acoustic wave and winds. Detection of wind direction and speed in different ranges has different applications such as meteorology, wind power plants, gas flow measurement in smart building and gas consumption of power plants. In this paper, a four wires sensor i...
متن کامل